Midterm Exam

(October 13th @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 PTS)

Compute the result of the following operations. The operands are signed fixed-point numbers. The result must be a signed fixed point number. For the division, use x = 5 fractional bits.

inclusion for the division dec $x = 3$ independent bios							
1.0001 +	1000.0101 -	01.11111 +					
1.001001	1.010101	0.00001					
01.011 ×	1.001 ×	01.01110 ÷					
1.01101	1.0101	1.011					

PROBLEM 2 (30 PTS)

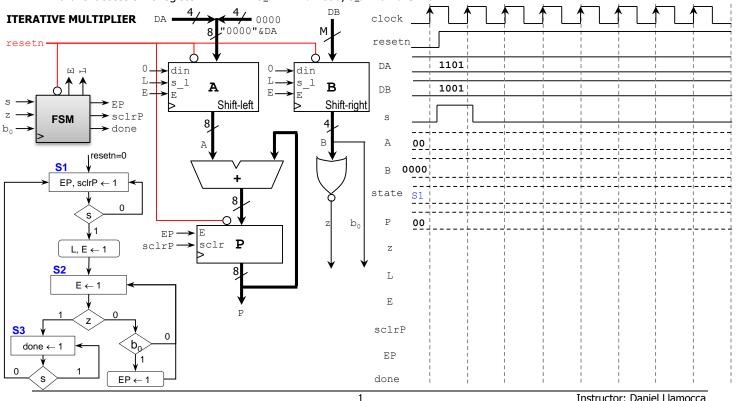
Calculate the result (provide the 32-bit result) of the following operations with single floating point numbers. Truncate the results when required. When doing fixed-point division, use x = 4 fractional bits.

ſ	√	42FA8000 + C0E00000	✓	50DAD000 - D0FAD000	✓	01800000 × FAB80000	✓	7B390000 ÷ C8C00000

PROBLEM 3 (15 PTS)

Convert the following signed fixed point numbers in format [12.8] to the dual fixed point format 12.8.4.

FX	A.CE	F.EE	C.0B	8.BF	. DF L.UA		
DFX							


PROBLEM 4 (20 PTS)

Calculate the result of the following operations where the numbers are represented in dual fixed-point arithmetic. Note that the results must be in the same format. Include an overflow bit when necessary.

DFX Format 12_6_4	Result	Overflow		Result	overflow
COA + C2B			FB9-072		
2CD + 398			F33-CBF		

PROBLEM 5 (15 PTS)

• Complete the timing diagram of the following iterative unsigned multiplier (N = 4, M = 4). Register: sclr: synchronous clear. Here, if sclr = E = 1, the register contents are initialized to 0. Parallel access shift register: If E = 1: $s_l = 1 \rightarrow \text{Load}$, $s_l = 0 \rightarrow \text{Shift}$

